Initial Ideal of Binomial Edge Ideal in degree 2 3

نویسندگان

  • Sohail Zafar
  • Zohaib Zahid
چکیده

We study the initial ideal of binomial edge ideal in degree 2 ([in<(JG)]2), associated to a graph G. We computed dimension, depth, Castelnuovo-Mumford regularity, Hilbert function and Betti numbers of [in<(JG)]2 for some classes of graphs. AMS Mathematics Subject Classification (2010): 05E40, 16E30

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial Ideal of Binomial Edge Ideal in Degree 2

We study the initial ideal of binomial edge ideal in degree 2 ([in<(JG)]2), associated to a graph G. We computed dimension, depth, Castelnuovo-Mumford regularity, Hilbert function and Betti numbers of [in<(JG)]2 for some classes of graphs. AMS Mathematics Subject Classification (2010): 05E40, 16E30

متن کامل

On the binomial edge ideals of block graphs

We find a class of block graphs whose binomial edge ideals have minimal regularity. As a consequence, we characterize the trees whose binomial edge ideals have minimal regularity. Also, we show that the binomial edge ideal of a block graph has the same depth as its initial ideal.

متن کامل

On The Binomial Edge Ideal of a Pair of Graphs

We characterize all pairs of graphs (G1, G2), for which the binomial edge ideal JG1,G2 has linear relations. We show that JG1,G2 has a linear resolution if and only if G1 and G2 are complete and one of them is just an edge. We also compute some of the graded Betti numbers of the binomial edge ideal of a pair of graphs with respect to some graphical terms. In particular, we show that for every p...

متن کامل

Binomial edge ideals and rational normal scrolls

‎Let $X=left(‎ ‎begin{array}{llll}‎ ‎ x_1 & ldots & x_{n-1}& x_n\‎ ‎ x_2& ldots & x_n & x_{n+1}‎ ‎end{array}right)$ be the Hankel matrix of size $2times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_Gsubset K[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaula...

متن کامل

The Universal Gröbner Basis of a Binomial Edge Ideal

We show that the universal Gröbner basis and the Graver basis of a binomial edge ideal coincide. We provide a description for this basis set in terms of certain paths in the underlying graph. We conjecture a similar result for a parity binomial edge ideal and prove this conjecture for the case when the underlying graph is the complete graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015